Tromino tilings of domino-deficient rectangles

نویسنده

  • Mridul Aanjaneya
چکیده

In this paper I have settled the open problem, posed by J. Marshall Ash and S. Golomb in [4], of tiling an m × n rectangle with L-shaped trominoes, with the condition that 3 |(mn 2) and a domino is removed from the given rectangle. It turns out that for any given m, n ≥ 7, the only pairs of squares which prevent a tiling are {(1,2), (2,2)}, {(2,1), (2,2)}, {(2,3), (2,4)}, {(3,2), (4,2)} and their symmetric counterparts. For all other cases, the existence of a tiling is shown. Some results on tiling the general case of 2-deficiency are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Faultfree Tromino Tilings of Rectangles

In this paper we consider faultfree tromino tilings of rectangles and characterize rectangles that admit such tilings. We introduce the notion of crossing numbers for tilings and derive bounds on the crossing numbers of faultfree tilings. We develop an iterative scheme for generating faultfree tromino tilings for rectangles and derive the closed form expression for the exact number of faultfree...

متن کامل

Some Polyomino Tilings of the Plane

We calculate the generating functions for the number of tilings of rectangles of various widths by the right tromino, the L tetromino, and the T tetromino. This allows us to place lower bounds on the entropy of tilings of the plane by each of these. For the T tetromino, we also derive a lower bound from the solution of the Ising model in two dimensions.

متن کامل

The Z Alpern Multi-tower Theorem for Rectangles: a Tiling Approach

We provide a proof of the Alpern multi-tower theorem for Z d actions. We reformulate the theorem as a problem of measurably tiling orbits of a Z action by a collection of rectangles whose corresponding sides have no non-trivial common divisors. We associate to such a collection of rectangles a special family of generalized domino tilings. We then identify an intrinsic dynamic property of these ...

متن کامل

Alternating sign matrices and tilings of Aztec rectangles

The problem of counting numbers of tilings of certain regions has long interested researchers in a variety of disciplines. In recent years, many beautiful results have been obtained related to the enumeration of tilings of particular regions called Aztec diamonds. Problems currently under investigation include counting the tilings of related regions with holes and describing the behavior of ran...

متن کامل

Counting Domino Tilings of Rectangles via Resultants

The classical cosine formula for enumerating domino tilings of a rectangle, due to Kasteleyn, Temperley, and Fisher is proved using a combination of standard tools from combinatorics and algebra. For further details see [4].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 309  شماره 

صفحات  -

تاریخ انتشار 2009